

EVALUATION OF COMPUTING RESOURCE MANAGEMENT METHODS

FOR SDR CLOUDS

Vuk Marojevic, Ismael Gomez, Antoni Gelonch
Radio Communications Research Group, Universitat Politècnica de Catalunya

{marojevic|ismael.gomez|antoni}@tsc.upc.edu

ABSTRACT

SDR clouds centralize the digital signal processing re-
sources of base stations and employ cloud computing tech-
nology enabling computing resource sharing and on de-
mand resource allocation. Each new user session request
requires the allocation of resources from the computing
resource pool for executing the corresponding transmitter
and receiver waveforms. An efficient computing resource
management is essential for complying with the tight tim-
ing constraints of wireless communications services. Dif-
ferent solutions exist. This paper reviews two resource
management concepts—global-dynamic and partitioned-
static scheduling. We introduce complexity models for ana-
lyzing the viability of these two approaches in the context
of SDR clouds. The results show that global-dynamic
scheduling may incur significant resource overheads.

1. INTRODUCTION

SDR clouds describe distributed antenna systems that con-
nect to a data center employing cloud computing technolo-
gy. The data center will perform the digital signal pro-
cessing tasks of base station transceivers. A single SDR
cloud data center may cover a metropolitan area with mil-
lions of inhabitants. Thousands of processors will then
serve thousands of user sessions in parallel [11].
 SDR clouds are scalable and provide additional degrees
of flexibility for improving the resource efficiency. The
SDR cloud is long-term vision. We envisage its gradual
development and deployment, which can be divided into
three phases:

1. Centralized baseband processing,
2. Automatic computing resource allocation and

management,
3. Virtualization, enabling computing resource shar-

ing.
The consolidation of these phases will enable the realiza-
tion of SDR clouds. The centralized baseband processing
concept is being tested already, supported by major opera-
tors and infrastructure providers. Automatic computing
resource allocation and management is necessary for effi-

ciently managing complex computing systems in dynamic
environments. Virtualization will finally allow the inde-
pendent management of SDR cloud customers, sharing a
common resource pool in a fair and controlled way.
 Wireless communications transceivers process user
signals in several processing stages. The digital signal pro-
cessing chain defines the SDR transmitter or receiver func-
tionality and is called a waveform. Many waveforms syn-
chronously process continuous data streams for as long as
the wireless communications session lasts. Samples are
regularly generated by the ADC at the receiver and are fed
to the DAC at the transmitter. The ADC/DAC works at a
specific sampling frequency, which determines the neces-
sary processing speed for real-time service provisioning.
Waveforms are thus data driven and often modeled as di-
rected acyclic graphs (DAGs) with hard real-time pro-
cessing and data flow requirements. Modern waveforms are
very processing intensive and, generally, need to be execut-
ed in a distributed fashion [1].
 The SDR cloud data center represents a large-scale
distributed computing system. Each new user session re-
quest implies allocating resources from a shared computing
resource pool for executing the transmitter and receiver
waveform of the new user while other users’ waveforms
may already be running. A session termination correspond-
ingly frees resources. Hence, distributed computing re-
sources will be dynamically occupied and released. The
tight timing constraints of wireless communication services
require developing efficient computing resource manage-
ment approaches that operate in real time while introducing
as little resource overhead as possible. Different approaches
exist. This paper reviews two general resource management
concepts: global-dynamic and partitioned-static schedul-
ing.
 Global scheduling is the most commonly employed
scheme for running general purpose applications on multi-
core processors. The literature on this topic is vast, cover-
ing many different scheduling types. Some algorithms sup-
port (hard or soft) real-time applications. A dynamic global
scheduler executes periodically and may allow process
preemption. All processes that are ready for execution are
organized in a common queue. The scheduler periodically
decides which process is executed when and where. The

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

371

scheduling overhead is then given by the scheduling perio-
dicity and the execution time per scheduler invocation. It
can be significant [2].
 Although the global scheduler is not designed for sig-
nal processing applications, this family of schedulers is
employed in many modern modems, from multi-core mo-
bile phones to base stations. IBM’s wireless network cloud
(WNC) uses a global scheduler. The processing workload is
therefore divided into several threads, each processing a set
of OFDM symbol blocks. The global scheduler dynamically
distributes threads among cores. This way waveforms are
allocated to multi-core processors running Linux with real-
time kernel extensions [3].
 The alternative to global scheduling is partitioned
scheduling, where a mapping algorithm first distributes the
waveform modules among the processing elements (PEs)
followed by local scheduling. Partitioned-static scheduling
in the context of SDR clouds then runs the mapper and
scheduler once for each new user session request without
rescheduling executing waveforms. The overhead is then a
function of the user arrival rate and the resource allocation
complexity per user.
 This paper analyzes the complexity of these two com-
puting resources management methods for assessing their
suitability for SDR clouds. Section 2 provides a brief over-
view of some main scheduling concepts. Section 3 intro-
duces the complexity models and metrics for analyzing the
overheads of the two scheduling methods in medium and
highly loaded scenarios. Section 4 derives the conclusions.

2. SCHEDULING

Scheduling refers to the process of temporal organization of
events. In the computing context, the scheduler essentially
determines the execution intervals of processes. Although
processing time is often considered as the most critical re-
source, the access to other types of computing resources
(communication buses, memories, etc.) needs to be sched-
uled as well. Scheduling is a complex field of research in
with several decades of innovation. This section can only
provide a sketchy overview of the different scheduling con-
cepts.

Fig. 1. Scheduling classification.

 First of all we may distinguish between uniprocessor
and multiprocessor scheduling. The uniprocessor schedul-
ing problem reduces to determining the execution order of
processing tasks on a single processing element (PE). Dis-
tributed computing systems require multiprocessor schedul-
ing, which will play an increasingly important role in the
future. The trend goes towards many-core devices, which
can provide better computing and energy figures [6].

Multiprocessor scheduling is, except for the trivial cas-
es, an NP complete optimization problem [8]. In simple
terms this means that searching for an optimal solution is
computationally intractable. Many suboptimal approxima-
tions and heuristics were therefore introduced.

Scheduling algorithms fall under different categories
and several taxonomies, such as [5], were proposed. Figure
1 indicates some major scheduling classes, which we dis-
cuss in continuation.

2.1. Global versus Partitioned Scheduling
A global scheduler allocates computing resources to com-
puting tasks using a single global queue. A single scheduler
thus determines the execution start of processes, data flows,
and so forth for all tasks in the system. Global scheduling is
the most popular scheduling approach, deployed by the
real-time (RT) Linux kernel, among others. Popular algo-
rithms are the global earliest deadline first (G-EDF) and
the global rate monotonic scheduler (G-RMS) [7]. Global
scheduling directly addresses the multiprocessor scheduling
problem and can achieve better schedules, especially if ap-
plication speedup it the objective. Since the multiprocessor
scheduling problem is NP complete, any solution will be
suboptimal, though.

The partitioned scheduler works in two phases: It glob-
ally maps tasks to PEs, and locally schedules the process
execution on each PE. Partitioned schedulers cannot pro-
vide optimal schedules, in general. Moreover, if tasks are
added to the system at runtime, it may be necessary to rep-
artition the entire system.

Hybrid solutions are currently investigated. These are
often referred to as clustered or semi-partitioned schedul-
ing, where tasks are first assigned to groups of processors
(clusters) and then scheduled by global schedulers, one per
cluster. This allows for combining the benefits of global
and partitioned scheduling.

2.2. Static versus Dynamic Scheduling
Real-time scheduling algorithms can be static or dynamic.
Static algorithms assign processes to processors and deter-
mine the execution start of each process a priori, before the
execution start (offline). They are often used to schedule
periodic tasks. Aperiodic tasks whose characteristics are not
know a priori need to employ dynamic scheduling algo-
rithms.

Scheduling

global partitioned

static dynamic static dynamic

preemptivepreemptive non-
preemptive

non-
preemptive

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

372

 Dynamic scheduling assumes very little a priori
knowledge about the application’s resource needs and the
execution environment. Whereas in the static case sched-
ules can be computed before the application is ever execut-
ed, dynamic scheduling decisions are not made until a pro-
cess begins its life in the dynamic environment [5].

Dynamic scheduling causes runtime overhead, which
can be significant for certain applications. Applications
composed of fine grain tasks will lead to more active tasks
and, thus, a higher scheduling overhead. Shorter task exe-
cution times incur more overhead, which grows with the
number of PEs in the system [10].

2.3. Preemptive versus Nonpreemptive Scheduling
Dynamic schedulers can be preemptive or nonpreemptive.
Preemptive schedulers can stop a process in execution for
executing another process instead. The stopped process will
be resumed at some later time instant and possibly migrated
to another processor. This provides full flexibility for adapt-
ing to frequent changes in the workload and managing
tasks with different priorities.

Nonpreemptive schedulers cannot stop an executing
process for scheduling another. Later arriving tasks then
need to be assigned to the remaining resources or schedul-
ing holes or must wait until more resources become availa-
ble. Nonpreemptive schedulers may accept fewer tasks in a
dynamic system as deadlines (of later arriving tasks) may
be missed. They incur less system overhead, because of no
task migrations and fewer context switches. Nonpreemptive
schedulers are appropriate for scheduling tasks of equal
priorities and applications with regular execution character-
istics.

3. ANALYSIS

This section derives simple models for comparing the com-
plexity of a partitioned static scheduler (PSS) with a global
dynamic preemptive scheduler (GDPS). We apply our anal-
ysis on a processing cluster of an SDR cloud data center. A
processing cluster is a group of PEs that processes user sig-
nals associated to group of radio cells. Clustering is a prac-
tical technique for limiting the resource management com-
plexity while still enabling resource sharing [11].

3.1 Schedulers
A) PSS
The synchronous and regular data flow on average of many
radio access technologies (RATs), including UMTS and
LTE, enables assuming a pipelined execution pattern. Pipe-
lined execution, where all waveform tasks execute each
time slot, eliminates the precedence constraints between
tasks and greatly simplifies the scheduling and synchroni-
zation processes. The time slot should be specified as a

fraction of a millisecond for ensuring low processing laten-
cies [11].
 The PSS implicitly models the computing resource
time. A feasible mapping thus ensures meeting the real-
time processing requirements with the available computing
resources. The scheduler determines the execution order so
that the data processing and propagation finished within
the time slot boundaries [1]. The computing resource ma-
trices are dynamically updated so that each new session
request can access only the remaining computing resources
(processing power and interprocessor bandwidths). This
eliminates resource conflicts and enables static scheduling
in the SDR cloud context.

B) GDPS
The GDPS is commonly deployed in distributed computing
contexts because of its flexibility to adapt to varying work-
loads and computing conditions. Without loss of generality,
we assume that the GDPS needs to recalculate the schedule
of all active waveforms each time a user enters or exits the
system. This assumption can be easily relaxed for contem-
plating different scheduler invocation rates.

3.2. Complexity Models
The scheduling overhead, that is, the resources used for
running the scheduler, is proportional to the complexity of
each scheduling invocation and the invocation rate. The
PSS maps only the new waveform to the available compu-
ting resources during the user session initiation phase. The
processor-internal scheduling has a complexity of O(1) and
can be neglected. The GDPS, on the other hand, resched-
ules all active waveforms at each scheduling event.
 The parameters of our models are summarized in Table
I. We assume that the PSS and the GDPS have the same
complexity t per waveform. That is,

 t1 = A·n [s] (1)

and

 t2 = B·m·n² [s], (2)

depending if the waveform is executed as an indivisible
processing block (t = t1) or as a processing chain of m pro-
cessing blocks (t = t2). Independent tasks (one per wave-
form) are scheduled in the first case. This essentially in-
volves choosing one out of n PEs for executing any wave-
form. A waveform modeled as a processing chain of m pro-
cesses allows for distributed processing and higher resource
occupation, in general. The real-time data flow between
processes, however, needs to be scheduled to the available
interprocessor communication resources and explains the
complexity increase of (2) when compared to (1).

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

373

Table I – Modeling parameters.
t Execution time of the PSS or GDPS per waveform

[s/waveform]
A, B Scaling factors [s]
n Number of PEs in the cluster
m Number of waveform tasks
λ User arrival rate, that is, average number of new

user session requests per second [users/s]
u Number of active user sessions (including new ses-

sion requests)

 Equation (2) corresponds to the complexity order of the
t1-mapping algorithm applied to tasks graphs with prece-
dence constraints [1]. When the precedence constraints are
dropped, the complexity order reduces to O(m·n), from
which (1) follows. Most practical schedulers have complex-
ity orders that can be modeled as (1), (2), or somewhere in
between: t1 ≤ t ≤ t2 [4] [7] [9].
 The scaling factors A and B translate from complexity
orders to execution times. Their values can be obtained
from measuring the scheduler execution time on the PE
that will run the scheduler. We assume only one waveform
per user here, although two independent waveforms, one
for the transmitter and one for the receiver, would need to
be scheduled for each user. The scaling factors may absorb
this.
 The time between consecutive session establishments
follows a Poisson distribution with a mean of λ-1. In other
words, λ-1 represents the average time between session re-
quests and λ the average user arrival rate.
 We model the number of active users per cluster as

 u = ρ·n/k, (3)

where k indicates the fraction or fractional multiple of a PE
needed for executing a waveform in real time. A value of k
= 1.5, for instance, means that the processing power equiv-
alent to 1.5 PEs is needed for executing a waveform. This
assumes homogeneous waveforms and PEs. Parameter ρ
specifies the average system load. A value of ρ = 0.5, for
instance, indicates a 50 % occupation of the cluster pro-
cessing resources.

A) PSS
The overhead of the PSS can be directly obtained as the
complexity of allocating resource for a single waveform
times the mean user arrival rate:

 PE-overheadPSS = λ·t. (4)

The PE-overheadPSS represents the fraction or fractional
multiple of a single PE needed for executing the PSS. As-
suming that the scheduler runs on the same computing
cluster as the waveforms, the resource it occupies are not

available for digital signal processing. We may divide this
overhead by the number of PE in the cluster to obtain the
fraction of the cluster processing power dedicated to sched-
uling:

 CL-overheadPSS = λ·t/n. (5)

 The dependency on the different modeling parameters
can be easily found by combining (5) with (1) or (2): The
CL-overheadPSS is

 proportional to λ,
 independent of m (t = t1) and proportional to m (t

= t2), respectively, and
 independent of n (t = t1) and proportional to n (t =

t2), respectively.

Being independent of n is highly desirable because this
means that the scheduling complexity is independent of the
cluster size. In this case we may not even need to define
clusters if other parameters—λ, in particular—would not
increase with the cluster size and increasing geographical
coverage. A scheduler whose complexity is proportional to
n is usually said to scale well with the number of PEs. We
will analyze this further in Section 3.3.

B) GDPS
The GDPS recalculates the schedule of all active tasks at
each scheduling event, which here coincides with a user
session initiation or termination. We assume that sessions
are initiated and terminated independently and analyze the
complexity in stable operation, where the average number
of users entering and leaving the system is balanced. The
percentage of a PE dedicated to scheduling can then be
modeled as

 PE-overheadGDPS = 2λ·u·t. (6)

The processing overhead on cluster basis is then

 CL-overheadGDPS = 2λ·u·t/n. (7)

Combining (7) with (1) or (2) and (3) we conclude that the
CL-overheadGDPS is

 proportional to λ,
 proportional to ρ,
 independent of m (t = t1) and proportional to m (t

= t2), respectively, and
 proportional to n (t = t1) and n2 (t = t2), respectively.

Assuming modular waveforms, the GDPS does not scale
that well with the number of PEs.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

374

Table II – Simulation parameters.
A, B 0.25 µs [1]
m* 10, 20
n 4, 8, 12, 16, 24, 32, 40, 48, 56, 64
λ 0.1, 1, 10
ρ 0.5, 0.8
k 0.7

* Applies to t = t2 (2).

3.3. Results
Table II indicates the parameter values chosen for the simu-
lations. We simulate different traffic demands, cluster sizes
and waveform granularities. Figure 2 shows the cluster
processing overhead as a function of the number of PEs n
for different user arrival rates λ and a single processing
block per waveform (t = t1).
 As expected, we observe that the cluster processing

Fig 2. Cluster processing overhead due to (1) for ρ = 0.5.

Fig 3. Cluster processing overhead due to (2) for m = 10, ρ = 0.5.

overhead of the PSS is independent of n. The complexity of
the GDPS increases with the number of PEs and is consid-
erably higher than that of the PSS. However, the overhead
of the GDPS is approximately 0.02 % for 64 PEs and λ =
10, occupying only 1.3 % of the processing resources of a
single PE. This overhead is perfectly assumable, meaning
that the GDPS is apt for working under the given condi-
tions.
 The results of Fig. 2 assume a coarse-grained sched-
uler, which schedules waveforms as indivisible processing
blocks. This will generally impede achieving high pro-
cessing loads. The loss in processing power can be as high
as 50 % for waveforms requiring just over 50 % of a PE’s
capacity. High processing loads can be achieved when as-
suming smaller processing blocks and distributing the exe-
cution of each waveform [11]. The next three figures con-
sider this case.

Fig 4. Cluster processing overhead due to (2) for m = 20, ρ = 0.5.

Fig 5. Cluster processing overhead due to (2) for m = 20, ρ = 0.8.

10 20 30 40 50 60
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

n

C
L-

ov
er

he
ad

PSSm-=0.1
GDSm-=0.1
PSSm-=1
GDSm-=1
PSSm-=10
GDSm-=10

10 20 30 40 50 60
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

n

C
L-

ov
er

he
ad

PSSm-=0.1
GDSm-=0.1
PSSm-=1
GDSm-=1
PSSm-=10
GDSm-=10

10 20 30 40 50 60
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

n

C
L-

ov
er

he
ad

PSSm-=0.1
GDSm-=0.1
PSSm-=1
GDSm-=1
PSSm-=10
GDSm-=10

10 20 30 40 50 60
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

n

C
L-

ov
er

he
ad

PSS1-=0.1
GDS1-=0.1
PSS1-=1
GDS1-=1
PSS1-=10
GDS1-=10

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

375

 Figure 3 shows that scheduling precedence-constrained
tasks results in a significant complexity increase. The com-
plexities of the PSS and the GDPS both increase with the
number of PEs. The dependency on n is much more signifi-
cant for the GDPS, as indicated already in Section 3.2.B. A
cluster processing overhead of approximately 15 %, which
is obtained for the GDPS with n = 64 and λ = 10, may be
inacceptable. It means that 0.15 · 64 = 9.6 PEs are dedicat-
ed to scheduling, leaving only 54.4 PEs for digital signal
processing.
 When doubling the number of waveform tasks from 10
(Fig. 3) to 20 (Fig. 4), the scheduling overhead also dou-
bles. Figure 5 finally confirms that the CL-overheadGDPS is
a function of the average system load. This is so because
the more users are active, the more tasks will need to be
scheduled at each scheduling invocation. This is different
for the PSS, which determines the resource allocation only
for the waveform associated with the new user session re-
quest. The dashed curves are thus identical in Figs. 4 and 5.
 Our results confirm those of [10] mentioned earlier:
The scheduling overhead increases

 with the task granularity (m),
 with the number of PEs (n), and
 inversely to the task execution time (λ-1).

 If we limit the scheduling overhead to 1.5 %, which
corresponds to approximately 1 PE out of 64, the GDPS can
assume a user arrival rate of up to 1 user per second for m =
10, ρ = 0.5, and n = 64. For higher m, ρ, or n, the schedul-
ing invocation rate needs to be even lower. The PSS, on the
other hand, can manage much more than 64 PEs or manage
more than 10 new users per second. All four figures indi-
cate that the PSS can manage 100 times higher user arrival
rates than the GDPS for equivalent overheads and n = 64.
 Note that n PEs will execute n/k waveforms at most.
High λ values then do not make sense for small clusters.
We may, however, extend the scope of λ embracing also the
dynamic switches in transmission modes that require recon-
figurations and rescheduling.

4. CONCLUSIONS

This paper has analyzed the complexity of two popular
scheduling concepts for their applicability in SDR clouds.
The results confirm the common scalability problem of
global schedulers [2]. Moreover, whereas global scheduling
works with multicores, it is very inefficient for multiproces-
sors because of the costly task migrations. In the SDR cloud
this may considerably limit the definition of clusters.
 The PSS, on the other hand, scales well with the num-
ber of PEs. The limiting factor here is the user arrival rate,

which may impede the definition of large clusters serving
large geographical areas with high user mobility.
 We should mention that some RATs, such as WiFi or
WiMAX, send packets in bursts based on the channel
availability. The signal processing is still data driven, but
asynchronous. This may have an effect on the applicability
of the proposed PSS scheme and requires a thorough analy-
sis, which is beyond this paper’s scope. Modern transceiv-
ers may, furthermore, allow for frequent changes in the
transmission and reception modes. If these changes involve
the reconfiguration of processing blocks, the PSS would
need to find robust resource allocations or remap the corre-
sponding waveform (tasks). The scheduling would then be
static only for the duration of a configuration rather than
the entire user session. A hybrid approach between static
and dynamic scheduling may therefore be explored.

ACKNOWLEDGMENT

This work was supported by Spanish Government
(MINECO) under project TEC2011-29126-C03-02.

5. REFERENCES

[1] V. Marojevic, X. Revés, A. Gelonch, “A computing resource

management framework for software-defined radios,” IEEE
Trans. Comput., vol. 57, no. 10, pp. 1399-1412, Oct. 2008.

[2] B. B. Brandenburg, J. M. Calandrino, J. H. Anderson, “On
the Scalability of Real-Time Scheduling Algorithms on Mul-
ticore Platforms: A Case Study,” Proc. 2008 Real-Time Sys-
tem Symposium, pp. 157-169, 2008.

[3] Z. Zhu, et al., “Virtual base station pool: towards a wireless
network cloud for radio access networks,” Proc. 8th ACM Int.
Conf. Comp. Frontiers (CF’11), 3-5 May, 2011, Ischia, Italy.

[4] V. Marojevic, “Computing resource management in software-
defined and cognitive radios,” Ph.D. Dissertation, Universitat
Politècica de Catalunya (UPC), Barcelona, July 2009. Avail-
able at http://flexnets.upc.edu/trac/wiki/Publications

[5] T. L. Casavant, J. G. Kuhl, “A taxonomy of scheduling in
general-purpose distributed computing systems,” IEEE
Trans. Softw. Eng., vol. 14, no. 2, pp. 141-154, Feb. 1988.

[6] D. H. Woo; H.-H.S. Lee, “Extending Amdahl's law for ener-
gy-efficient computing in the many-core era,” IEEE Comput-
er, vol. 41, iss 12, pp. 24-31, Dec. 2008.

[7] M. A. Dellinger, “An experimental evaluation of the scalabil-
ity of real-time scheduling algorithms on large-scale multi-
core platforms,” MSc Thesis, Virginia Tech, 2011.

[8] S. H. Bokhari, “On the mapping problem,” IEEE Trans.
Comput., vol. C-30, no. 3, pp. 207-214, March 1981.

[9] X.M. Zhu, P.Z. Lu, “Multi-dimensional scheduling for real-
time tasks on heterogeneous clusters,” J. of Computer Sci-
ence and Technology, vol. 24, iss. 3, pp. 434-446, May 2009.

[10] O. Arnold, G. Fettweiss, “On the impact of dynamic task
scheduling in heterogeneous MPSoCs,” Proc. 2011 Int. Conf.
Embedded Computer Systems (SAMOS), pp. 17-24, 2011.

[11] I. Gomez, V. Marojevic, A. Gelonch, “Resource management
for software-defined radio clouds,” IEEE MICRO, vol. 32,
iss. 1, pp. 44-53, Jan/Feb 2012.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

376

