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ABSTRACT 
 
SDR clouds centralize the digital signal processing re-
sources of base stations and employ cloud computing tech-
nology enabling computing resource sharing and on de-
mand resource allocation. Each new user session request 
requires the allocation of resources from the computing 
resource pool for executing the corresponding transmitter 
and receiver waveforms. An efficient computing resource 
management is essential for complying with the tight tim-
ing constraints of wireless communications services. Dif-
ferent solutions exist. This paper reviews two resource 
management concepts—global-dynamic and partitioned-
static scheduling. We introduce complexity models for ana-
lyzing the viability of these two approaches in the context 
of SDR clouds. The results show that global-dynamic 
scheduling may incur significant resource overheads. 
 
 

1. INTRODUCTION 
 
SDR clouds describe distributed antenna systems that con-
nect to a data center employing cloud computing technolo-
gy. The data center will perform the digital signal pro-
cessing tasks of base station transceivers. A single SDR 
cloud data center may cover a metropolitan area with mil-
lions of inhabitants. Thousands of processors will then 
serve thousands of user sessions in parallel [11]. 
 SDR clouds are scalable and provide additional degrees 
of flexibility for improving the resource efficiency. The 
SDR cloud is long-term vision. We envisage its gradual 
development and deployment, which can be divided into 
three phases: 

1. Centralized baseband processing, 
2. Automatic computing resource allocation and 

management, 
3. Virtualization, enabling computing resource shar-

ing. 
The consolidation of these phases will enable the realiza-
tion of SDR clouds. The centralized baseband processing 
concept is being tested already, supported by major opera-
tors and infrastructure providers. Automatic computing 
resource allocation and management is necessary for effi-

ciently managing complex computing systems in dynamic 
environments. Virtualization will finally allow the inde-
pendent management of SDR cloud customers, sharing a 
common resource pool in a fair and controlled way. 
 Wireless communications transceivers process user 
signals in several processing stages. The digital signal pro-
cessing chain defines the SDR transmitter or receiver func-
tionality and is called a waveform. Many waveforms syn-
chronously process continuous data streams for as long as 
the wireless communications session lasts. Samples are 
regularly generated by the ADC at the receiver and are fed 
to the DAC at the transmitter. The ADC/DAC works at a 
specific sampling frequency, which determines the neces-
sary processing speed for real-time service provisioning. 
Waveforms are thus data driven and often modeled as di-
rected acyclic graphs (DAGs) with hard real-time pro-
cessing and data flow requirements. Modern waveforms are 
very processing intensive and, generally, need to be execut-
ed in a distributed fashion [1]. 
 The SDR cloud data center represents a large-scale 
distributed computing system. Each new user session re-
quest implies allocating resources from a shared computing 
resource pool for executing the transmitter and receiver 
waveform of the new user while other users’ waveforms 
may already be running. A session termination correspond-
ingly frees resources. Hence, distributed computing re-
sources will be dynamically occupied and released. The 
tight timing constraints of wireless communication services 
require developing efficient computing resource manage-
ment approaches that operate in real time while introducing 
as little resource overhead as possible. Different approaches 
exist. This paper reviews two general resource management 
concepts: global-dynamic and partitioned-static schedul-
ing. 
 Global scheduling is the most commonly employed 
scheme for running general purpose applications on multi-
core processors. The literature on this topic is vast, cover-
ing many different scheduling types. Some algorithms sup-
port (hard or soft) real-time applications. A dynamic global 
scheduler executes periodically and may allow process 
preemption. All processes that are ready for execution are 
organized in a common queue. The scheduler periodically 
decides which process is executed when and where. The 
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scheduling overhead is then given by the scheduling perio-
dicity and the execution time per scheduler invocation. It 
can be significant [2]. 
 Although the global scheduler is not designed for sig-
nal processing applications, this family of schedulers is 
employed in many modern modems, from multi-core mo-
bile phones to base stations. IBM’s wireless network cloud 
(WNC) uses a global scheduler. The processing workload is 
therefore divided into several threads, each processing a set 
of OFDM symbol blocks. The global scheduler dynamically 
distributes threads among cores. This way waveforms are 
allocated to multi-core processors running Linux with real-
time kernel extensions [3]. 
 The alternative to global scheduling is partitioned 
scheduling, where a mapping algorithm first distributes the 
waveform modules among the processing elements (PEs) 
followed by local scheduling. Partitioned-static scheduling 
in the context of SDR clouds then runs the mapper and 
scheduler once for each new user session request without 
rescheduling executing waveforms. The overhead is then a 
function of the user arrival rate and the resource allocation 
complexity per user. 
 This paper analyzes the complexity of these two com-
puting resources management methods for assessing their 
suitability for SDR clouds. Section 2 provides a brief over-
view of some main scheduling concepts. Section 3 intro-
duces the complexity models and metrics for analyzing the 
overheads of the two scheduling methods in medium and 
highly loaded scenarios. Section 4 derives the conclusions. 
 

2. SCHEDULING 
 
Scheduling refers to the process of temporal organization of 
events. In the computing context, the scheduler essentially 
determines the execution intervals of processes. Although 
processing time is often considered as the most critical re-
source, the access to other types of computing resources 
(communication buses, memories, etc.) needs to be sched-
uled as well. Scheduling is a complex field of research in 
with several decades of innovation. This section can only 
provide a sketchy overview of the different scheduling con-
cepts. 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Scheduling classification. 

 First of all we may distinguish between uniprocessor 
and multiprocessor scheduling. The uniprocessor schedul-
ing problem reduces to determining the execution order of 
processing tasks on a single processing element (PE). Dis-
tributed computing systems require multiprocessor schedul-
ing, which will play an increasingly important role in the 
future. The trend goes towards many-core devices, which 
can provide better computing and energy figures [6].  

Multiprocessor scheduling is, except for the trivial cas-
es, an NP complete optimization problem [8]. In simple 
terms this means that searching for an optimal solution is 
computationally intractable. Many suboptimal approxima-
tions and heuristics were therefore introduced.  

Scheduling algorithms fall under different categories 
and several taxonomies, such as [5], were proposed. Figure 
1 indicates some major scheduling classes, which we dis-
cuss in continuation. 
 
2.1. Global versus Partitioned Scheduling 
A global scheduler allocates computing resources to com-
puting tasks using a single global queue. A single scheduler 
thus determines the execution start of processes, data flows, 
and so forth for all tasks in the system. Global scheduling is 
the most popular scheduling approach, deployed by the 
real-time (RT) Linux kernel, among others. Popular algo-
rithms are the global earliest deadline first (G-EDF) and 
the global rate monotonic scheduler (G-RMS) [7]. Global 
scheduling directly addresses the multiprocessor scheduling 
problem and can achieve better schedules, especially if ap-
plication speedup it the objective. Since the multiprocessor 
scheduling problem is NP complete, any solution will be 
suboptimal, though. 

The partitioned scheduler works in two phases: It glob-
ally maps tasks to PEs, and locally schedules the process 
execution on each PE. Partitioned schedulers cannot pro-
vide optimal schedules, in general. Moreover, if tasks are 
added to the system at runtime, it may be necessary to rep-
artition the entire system.  

Hybrid solutions are currently investigated. These are 
often referred to as clustered or semi-partitioned schedul-
ing, where tasks are first assigned to groups of processors 
(clusters) and then scheduled by global schedulers, one per 
cluster. This allows for combining the benefits of global 
and partitioned scheduling. 
 
2.2. Static versus Dynamic Scheduling 
Real-time scheduling algorithms can be static or dynamic. 
Static algorithms assign processes to processors and deter-
mine the execution start of each process a priori, before the 
execution start (offline). They are often used to schedule 
periodic tasks. Aperiodic tasks whose characteristics are not 
know a priori need to employ dynamic scheduling algo-
rithms. 

Scheduling

global partitioned

static dynamic static dynamic

preemptivepreemptive non-
preemptive

non-
preemptive
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 Dynamic scheduling assumes very little a priori 
knowledge about the application’s resource needs and the 
execution environment. Whereas in the static case sched-
ules can be computed before the application is ever execut-
ed, dynamic scheduling decisions are not made until a pro-
cess begins its life in the dynamic environment [5]. 

Dynamic scheduling causes runtime overhead, which 
can be significant for certain applications. Applications 
composed of fine grain tasks will lead to more active tasks 
and, thus, a higher scheduling overhead. Shorter task exe-
cution times incur more overhead, which grows with the 
number of PEs in the system [10]. 
 
2.3. Preemptive versus Nonpreemptive Scheduling 
Dynamic schedulers can be preemptive or nonpreemptive. 
Preemptive schedulers can stop a process in execution for 
executing another process instead. The stopped process will 
be resumed at some later time instant and possibly migrated 
to another processor. This provides full flexibility for adapt-
ing to frequent changes in the workload and managing 
tasks with different priorities. 

Nonpreemptive schedulers cannot stop an executing 
process for scheduling another. Later arriving tasks then 
need to be assigned to the remaining resources or schedul-
ing holes or must wait until more resources become availa-
ble. Nonpreemptive schedulers may accept fewer tasks in a 
dynamic system as deadlines (of later arriving tasks) may 
be missed. They incur less system overhead, because of no 
task migrations and fewer context switches. Nonpreemptive 
schedulers are appropriate for scheduling tasks of equal 
priorities and applications with regular execution character-
istics. 
 

3. ANALYSIS 
 
This section derives simple models for comparing the com-
plexity of a partitioned static scheduler (PSS) with a global 
dynamic preemptive scheduler (GDPS). We apply our anal-
ysis on a processing cluster of an SDR cloud data center. A 
processing cluster is a group of PEs that processes user sig-
nals associated to group of radio cells. Clustering is a prac-
tical technique for limiting the resource management com-
plexity while still enabling resource sharing [11]. 
 
3.1 Schedulers 
A) PSS 
The synchronous and regular data flow on average of many 
radio access technologies (RATs), including UMTS and 
LTE, enables assuming a pipelined execution pattern. Pipe-
lined execution, where all waveform tasks execute each 
time slot, eliminates the precedence constraints between 
tasks and greatly simplifies the scheduling and synchroni-
zation processes. The time slot should be specified as a 

fraction of a millisecond for ensuring low processing laten-
cies [11]. 
 The PSS implicitly models the computing resource 
time. A feasible mapping thus ensures meeting the real-
time processing requirements with the available computing 
resources. The scheduler determines the execution order so 
that the data processing and propagation finished within 
the time slot boundaries [1]. The computing resource ma-
trices are dynamically updated so that each new session 
request can access only the remaining computing resources 
(processing power and interprocessor bandwidths). This 
eliminates resource conflicts and enables static scheduling 
in the SDR cloud context. 
 
B) GDPS 
The GDPS is commonly deployed in distributed computing 
contexts because of its flexibility to adapt to varying work-
loads and computing conditions. Without loss of generality, 
we assume that the GDPS needs to recalculate the schedule 
of all active waveforms each time a user enters or exits the 
system. This assumption can be easily relaxed for contem-
plating different scheduler invocation rates. 
 
3.2. Complexity Models 
The scheduling overhead, that is, the resources used for 
running the scheduler, is proportional to the complexity of 
each scheduling invocation and the invocation rate. The 
PSS maps only the new waveform to the available compu-
ting resources during the user session initiation phase. The 
processor-internal scheduling has a complexity of O(1) and 
can be neglected. The GDPS, on the other hand, resched-
ules all active waveforms at each scheduling event. 
 The parameters of our models are summarized in Table 
I. We assume that the PSS and the GDPS have the same 
complexity t per waveform. That is, 
       

 t1 = A·n [s] (1) 
 
and 
 

 t2 = B·m·n² [s], (2) 
 
depending if the waveform is executed as an indivisible 
processing block (t = t1) or as a processing chain of m pro-
cessing blocks (t = t2). Independent tasks (one per wave-
form) are scheduled in the first case. This essentially in-
volves choosing one out of n PEs for executing any wave-
form. A waveform modeled as a processing chain of m pro-
cesses allows for distributed processing and higher resource 
occupation, in general. The real-time data flow between 
processes, however, needs to be scheduled to the available 
interprocessor communication resources and explains the 
complexity increase of (2) when compared to (1). 
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Table I – Modeling parameters. 
t Execution time of the PSS or GDPS per waveform 

[s/waveform] 
A, B Scaling factors [s] 
n Number of PEs in the cluster 
m Number of waveform tasks 
λ User arrival rate, that is, average number of new 

user session requests per second [users/s] 
u Number of active user sessions (including new ses-

sion requests) 
 
 Equation (2) corresponds to the complexity order of the 
t1-mapping algorithm applied to tasks graphs with prece-
dence constraints [1]. When the precedence constraints are 
dropped, the complexity order reduces to O(m·n), from 
which (1) follows. Most practical schedulers have complex-
ity orders that can be modeled as (1), (2), or somewhere in 
between:  t1 ≤ t ≤ t2 [4] [7] [9]. 
 The scaling factors A and B translate from complexity 
orders to execution times. Their values can be obtained 
from measuring the scheduler execution time on the PE 
that will run the scheduler. We assume only one waveform 
per user here, although two independent waveforms, one 
for the transmitter and one for the receiver, would need to 
be scheduled for each user. The scaling factors may absorb 
this. 
 The time between consecutive session establishments 
follows a Poisson distribution with a mean of λ-1. In other 
words, λ-1 represents the average time between session re-
quests and λ the average user arrival rate. 
 We model the number of active users per cluster as  
 

 u = ρ·n/k, (3) 
 
where k indicates the fraction or fractional multiple of a PE 
needed for executing a waveform in real time. A value of k 
= 1.5, for instance, means that the processing power equiv-
alent to 1.5 PEs is needed for executing a waveform. This 
assumes homogeneous waveforms and PEs. Parameter ρ 
specifies the average system load. A value of ρ = 0.5, for 
instance, indicates a 50 % occupation of the cluster pro-
cessing resources.  
 
A) PSS 
The overhead of the PSS can be directly obtained as the 
complexity of allocating resource for a single waveform 
times the mean user arrival rate: 
 

 PE-overheadPSS = λ·t. (4) 
 
The PE-overheadPSS represents the fraction or fractional 
multiple of a single PE needed for executing the PSS. As-
suming that the scheduler runs on the same computing 
cluster as the waveforms, the resource it occupies are not 

available for digital signal processing. We may divide this 
overhead by the number of PE in the cluster to obtain the 
fraction of the cluster processing power dedicated to sched-
uling: 

  
 CL-overheadPSS = λ·t/n. (5) 

 
 The dependency on the different modeling parameters 
can be easily found by combining (5) with (1) or (2): The 
CL-overheadPSS is 
 

 proportional to λ, 
 independent of m (t = t1) and proportional to m (t 

= t2), respectively, and 
 independent of n (t = t1) and proportional to n (t = 

t2), respectively. 
 
Being independent of n is highly desirable because this 
means that the scheduling complexity is independent of the 
cluster size. In this case we may not even need to define 
clusters if other parameters—λ, in particular—would not 
increase with the cluster size and increasing geographical 
coverage. A scheduler whose complexity is proportional to 
n is usually said to scale well with the number of PEs. We 
will analyze this further in Section 3.3. 
 
B) GDPS 
The GDPS recalculates the schedule of all active tasks at 
each scheduling event, which here coincides with a user 
session initiation or termination. We assume that sessions 
are initiated and terminated independently and analyze the 
complexity in stable operation, where the average number 
of users entering and leaving the system is balanced. The 
percentage of a PE dedicated to scheduling can then be 
modeled as 
 

 PE-overheadGDPS = 2λ·u·t. (6) 
 
The processing overhead on cluster basis is then 
 

 CL-overheadGDPS = 2λ·u·t/n. (7) 
 
Combining (7) with (1) or (2) and (3) we conclude that the 
CL-overheadGDPS is 
 

 proportional to λ, 
 proportional to ρ, 
 independent of m (t = t1) and proportional to m (t 

= t2), respectively, and 
 proportional to n (t = t1) and n2 (t = t2), respectively. 

 
Assuming modular waveforms, the GDPS does not scale 
that well with the number of PEs. 
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Table II – Simulation parameters. 
A, B 0.25 µs [1] 
m* 10, 20 
n 4, 8, 12, 16, 24, 32, 40, 48, 56, 64 
λ 0.1, 1, 10 
ρ 0.5, 0.8 
k 0.7 

* Applies to t = t2 (2). 
 
3.3. Results 
Table II indicates the parameter values chosen for the simu-
lations. We simulate different traffic demands, cluster sizes 
and waveform granularities. Figure 2 shows the cluster 
processing overhead as a function of the number of PEs n 
for different user arrival rates λ and a single processing 
block per waveform (t = t1). 
 As  expected, we  observe  that  the  cluster  processing  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2. Cluster processing overhead due to (1) for ρ = 0.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. Cluster processing overhead due to (2) for m = 10, ρ = 0.5.  

overhead of the PSS is independent of n. The complexity of 
the GDPS increases with the number of PEs and is consid-
erably higher than that of the PSS. However, the overhead 
of the GDPS is approximately 0.02 % for 64 PEs and λ = 
10, occupying only 1.3 % of the processing resources of a 
single PE. This overhead is perfectly assumable, meaning 
that the GDPS is apt for working under the given condi-
tions. 
 The results of Fig. 2 assume a coarse-grained sched-
uler, which schedules waveforms as indivisible processing 
blocks. This will generally impede achieving high pro-
cessing loads. The loss in processing power can be as high 
as 50 % for waveforms requiring just over 50 % of a PE’s 
capacity. High processing loads can be achieved when as-
suming smaller processing blocks and distributing the exe-
cution of each waveform [11]. The next three figures con-
sider this case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Cluster processing overhead due to (2) for m = 20, ρ = 0.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5. Cluster processing overhead due to (2) for m = 20, ρ = 0.8.  
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 Figure 3 shows that scheduling precedence-constrained 
tasks results in a significant complexity increase. The com-
plexities of the PSS and the GDPS both increase with the 
number of PEs. The dependency on n is much more signifi-
cant for the GDPS, as indicated already in Section 3.2.B. A 
cluster processing overhead of approximately 15 %, which 
is obtained for the GDPS with n = 64 and λ = 10, may be 
inacceptable. It means that 0.15 · 64 = 9.6 PEs are dedicat-
ed to scheduling, leaving only 54.4 PEs for digital signal 
processing. 
 When doubling the number of waveform tasks from 10 
(Fig. 3) to 20 (Fig. 4), the scheduling overhead also dou-
bles. Figure 5 finally confirms that the CL-overheadGDPS is 
a function of the average system load. This is so because 
the more users are active, the more tasks will need to be 
scheduled at each scheduling invocation. This is different 
for the PSS, which determines the resource allocation only 
for the waveform associated with the new user session re-
quest. The dashed curves are thus identical in Figs. 4 and 5. 
 Our results confirm those of [10] mentioned earlier: 
The scheduling overhead increases 
 

 with the task granularity (m), 
 with the number of PEs (n), and 
 inversely to the task execution time (λ-1). 

 
 If we limit the scheduling overhead to 1.5 %, which 
corresponds to approximately 1 PE out of 64, the GDPS can 
assume a user arrival rate of up to 1 user per second for m = 
10, ρ = 0.5, and n = 64. For higher m, ρ, or n, the schedul-
ing invocation rate needs to be even lower. The PSS, on the 
other hand, can manage much more than 64 PEs or manage 
more than 10 new users per second. All four figures indi-
cate that the PSS can manage 100 times higher user arrival 
rates than the GDPS for equivalent overheads and n = 64. 
 Note that n PEs will execute n/k waveforms at most. 
High λ values then do not make sense for small clusters. 
We may, however, extend the scope of λ embracing also the 
dynamic switches in transmission modes that require recon-
figurations and rescheduling. 
 

4. CONCLUSIONS 
 
This paper has analyzed the complexity of two popular 
scheduling concepts for their applicability in SDR clouds. 
The results confirm the common scalability problem of 
global schedulers [2]. Moreover, whereas global scheduling 
works with multicores, it is very inefficient for multiproces-
sors because of the costly task migrations. In the SDR cloud 
this may considerably limit the definition of clusters. 
 The PSS, on the other hand, scales well with the num-
ber of PEs. The limiting factor here is the user arrival rate, 

which may impede the definition of large clusters serving 
large geographical areas with high user mobility. 
 We should mention that some RATs, such as WiFi or 
WiMAX, send packets in bursts based on the channel 
availability. The signal processing is still data driven, but 
asynchronous. This may have an effect on the applicability 
of the proposed PSS scheme and requires a thorough analy-
sis, which is beyond this paper’s scope. Modern transceiv-
ers may, furthermore, allow for frequent changes in the 
transmission and reception modes. If these changes involve 
the reconfiguration of processing blocks, the PSS would 
need to find robust resource allocations or remap the corre-
sponding waveform (tasks). The scheduling would then be 
static only for the duration of a configuration rather than 
the entire user session. A hybrid approach between static 
and dynamic scheduling may therefore be explored. 
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